
Utilisation en modélisation

Fonction de répartition empirique
et ensembles de confiance

1 Problème et son modèle statistique

Dans cet exercice on considère un problème lié à l’utilisation de l’aspirine en médecine.
Les données statistiques sont issues de l’article ”Heart attack risk found to be cut by
taking aspirin” paru dans le New York Times le 27 janvier 1997. Le problème consiste
à déterminer l’effet de l’aspirine sur la probabilité d’avoir une crise cardiaque ou une
congestion cérébrale. Il y avait deux groupes de patients: un groupe prenant de l’aspirine
(11037 patients) et l’autre prenant du placebo (11034 patients). Les médecins qui suivaient
ces patients ne savaient pas si le patient prenait de l’aspirine ou du placebo; dans chaque
groupe ils ont enregistré les nombres des crises cardiaques et des congestions cérébrales.

1.1 Crise cardiaque

1.1.1 Les données

Le résumé des données concernant les crises cardiaques se trouve dans le tableau suivant

nombre des crises cardiaques nombre des patients

groupe prenant de l’aspirine 104 11037

groupe prenant du placebo 189 11034

Tableau 1.

Ce qui est très étonnant dans ces données, c’est un nombre bas de crises cardiaques
dans le groupe prenant de l’aspirine. Le rapport

θ̂ =
104/11037

189/11034
= 0.55

signifie que l’aspirine divise presque par deux la probabilité de subir une crise cardiaque.
Mais la question qui se pose est la suivante: si on répète encore une fois cette étude
médicale pourrait-on arriver à la même conclusion?

1.1.2 Le modèle

Pour modéliser les données concernant la crise cardiaque on va utiliser le modèle suivant.
À chaque patient, on associe une variable qui prend deux valeurs 0 ou 1. La valeur 0
signifie que le patient n’a pas subi de crise cardiaque et la valeur 1 signifie qu’il en a subi
une. Pour le patient i dans le groupe prenant de l’aspirine on notera cette variable par Ai

et pour le patient dans le groupe prenant du placebo par Pi. Alors, on dispose de deux
échantillons

A = (A1, . . . , Am), m = 11037

et
P = (P1, . . . , Pn), n = 11034.

Notre hypothèse principale est ce que les v.a. Ai et Pi sont i.i.d. de loi Bernoulli. C’est-
à-dire

P(Ai = 1) = pas, P(Ai = 0) = 1 − pas

P(Pi = 1) = ppl, P(Pi = 0) = 1 − ppl
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Les paramètres pas et ppl sont inconnus. Ces sont les probabilités qu’un patient a de subir
une crise cardiaque dans le groupe prenant de l’aspirine et dans le groupe prenant du
placebo.

En se basant sur A est sur P il nous faut construire un estimateur pour le rapport

θ =
pas

plp
.

Il est facile de voir que l’estimateur du maximum de vraisemblance pour θ est donné par

θ̂ =

∑m
i=1

Ai

/

m
∑n

i=1
Pi

/

n
. (1)

Cet estimateur de θ est une v.a. et donc il est entaché d’erreurs. Donc la question qui se
pose est la suivante: si on répétait cette expérience encore une fois, dans quel ensemble
pourrait se trouver la nouvelle valeur de θ̂ avec une grande probabilité (par exemple 0.95).
En statistique, l’idée qui consiste dans l’utilisation d’un ensemble qui couvre le paramètre
inconnu avec une grande probabilité est appelée estimation par ensembles de confiance.
Autrement dit, dans le cas considéré on cherche un intervalle [θ, θ] t.q.

P
{

θ ∈ [θ, θ]
}

≥ 1 − α (2)

où la valeur 1−α est appelée niveau de confiance. Soulignons que θ et θ sont les fonctions
des échantillons A et P . Très souvent, on cherche un intervalle symétrique t.q.

P
(

θ > θ
)

≤ 1 − α

2
, P

(

θ < θ
)

≥ α

2
(3)

Évidement, il existe beaucoup d’intervalles satisfaisant (2) ou (3), et on cherche un
intervalle de taille la plus petite possible. Malheureusement, ce problème est très difficile
et sa solution n’existe que dans des cas particuliers. En pratique, il y a deux méthodes
principales pour construire un intervalle de confiance de taille raisonnablement petite:

• méthode se basant sur le principe du maximum de vraisemblance (tests statistiques)

• méthode qui utilise un estimateur dont on peut calculer ou estimer assez facilement
la fonction de répartition.

Dans cet exercice on ne considère que la seconde approche. Nous choisissons l’estimateur
θ̂ défini par (1) et supposons un instant que la fonction de répartition de θ̂ − θ

F (x, pas, ppl) = P
(

θ̂ − θ ≤ x
)

est connue. Soulignons que cette fonction de répartition dépend de pas, ppl qui sont in-
connus. Si ces paramètres étaient connus, évidemment, il nous suffirait de trouver les
quantiles qα(pas, ppl) et Qα(pas, ppl) t.q.

F (qα, pas, ppl) =
α

2
et F (Qα, pas, ppl) = 1 − α

2
.

pour construire l’intervalle de confiance suivant

θ = θ̂ − qα(pas, ppl), θ = θ̂ + Qα(pas, ppl).

Le problème principal de cette approche consiste à donc trouver la fonction de répartition

F (x, pas, ppl). Pour calculer cette fonction on va utiliser deux méthodes qui se basent sur

• le théorème de la limite centrale (approximation gaussienne)

• la fonction de répartition empirique (méthode du rééchantillonage)
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2 Approximation gaussienne

Le résultat suivant donne la loi asymptotique de θ̂ − θ lorsque n,m → ∞.

Théorème 1 Soit

σm,n(pas, ppl) =
pas

ppl

√

1 − pas

mpas
+

1 − ppl

nppl
(4)

alors, lorsque m → ∞ et n → ∞

θ̂ − θ

σm,n(pas, ppl)

L→ ξ (5)

où ξ suit une loi gaussienne centrée réduite.

Démonstration. Soient

p̂as =
1

m

m
∑

i=1

Ai p̂pl =
1

n

n
∑

i=1

Pi (6)

les estimateurs du maximum de vraisemblance des paramètres inconnus pas et ppl. Donc
par le théorème de la limite centrale, lorsque m → ∞ et n → ∞

(√
m(p̂as − pas),

√
n(p̂pl − ppl)

)

L→
(

ξ1

√

pas(1 − pas), ξ2

√

ppl(1 − ppl)

)

où ξ1 et ξ2 sont les v.a. indépendantes gaussiennes centrées réduites. D’où, à l’aide du
développement de Taylor, on obtient (5). �

Ce théorème nous permet de construire un intervalle de confiance de niveau α. Soit tα
le quantile de niveau α/2 de loi gaussienne centrée réduite, c’est-à-dire la racine

1√
2π

∫

∞

tα

e−u2/2 du =
α

2
(7)

donc on pose

θ = θ̂ − σn,m(p̂as, p̂pl)tα

θ = θ̂ + σn,m(p̂as, p̂pl)tα.
(8)

Théorème 2 Lorsque m → ∞ et n → ∞

P
(

θ /∈ [θ, θ]
)

→ α

Démonstration. Notons, que par la loi des grands nombres

σn,m(p̂as, p̂pl) → σm,n(pas, ppl), m, n → ∞.

Donc, en utilisant le Théorème 1 et la définition de tα on achève la démonstration. �

3 Méthode du rééchantillonage

Cette technique récente se base sur l’utilisation intensive des ordinateurs. L’idée principale
de cette méthode consiste à estimer la fonction de répartition de θ̂ − θ par la méthode de
Monte-Carlo. Dans notre cas, cette méthode se réduit aux étapes suivantes:
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• calculer deux fonctions de répartition empiriques

FA(x) =
1

m

m
∑

i=1

1(Ai ≤ x), FP (x) =
1

n

n
∑

i=1

1(Pi ≤ x)

pour cela il suffit d’estimer les paramètres inconnus pas et ppl en se basant sur les
échantillons A et P

p̂as =
1

m

m
∑

i=1

Ai p̂pl =
1

n

n
∑

i=1

Pi

car

FA(x) = (1 − p̂as)1(x ≥ 0) + p̂as1(x ≥ 1),

FP (x) = (1 − p̂pl)1(x ≥ 0) + p̂as1(x ≥ 1).

• générer N vecteurs indépendants

Ãl = (Ãl
1, . . . , Ã

l
m), P̃ l = (P̃ l

1, . . . , P̃
l
n) l = 1, . . . ,N

dont les fonctions de répartition sont FA(x) et FP (x) respectivement.

• calculer les estimateurs

θ̃l =

∑m
i=1

Ãl
i

/

m
∑n

i=1
P̃ l

i

/

n
l = 1, . . . ,N (9)

• calculer la fonction de répartition empirique de θ̃l − θ̂

F̃N (x) =
1

N

N
∑

l=1

1(θ̃l − θ̂ ≤ x) (10)

et trouver deux quantiles empiriques

F̃N (Qα) = 1 − α

2
, F̃N (qα) =

α

2
(11)

• finalement, construire l’intervalle de confiance [θ, θ] avec

θ = θ̂ − qα, θ = θ̂ + Qα. (12)

3.0.3 Pourquoi le rééchantillonage marche-t-il?

On notera
F (x, pas, ppl) = P

(

θ̂ − θ ≤ x
)

Le théorème suivant explique quelle fonction de répartition rend le rééchantillonage.

Théorème 3 Lorsque N → ∞

sup
x

|F̃N (x) − F (x, p̂as, p̂pl)| P.S.→ 0.

4



Démonstration. Voir le théorème Glivenko-Cantelli. �

Ensuite, par la loi des grands nombres, pour les estimateurs p̂as et p̂pl on a lorsque
m,n → ∞

p̂as
P.S.→ pas, p̂pl

P.S.→ ppl.

Il est facile de voir que la fonction de répartition F (x, pas, ppl) est continue par rapport à
pas, ppl. Donc, lorsque m,n → ∞

sup
x

|F (x, p̂as, p̂pl) − F (x, pas, ppl)| P.S.→ 0.

C’est pourquoi
P

(

θ /∈ [θ̂ − qα, θ̂ + Qα]
)

→ α, m, n,N → ∞

3.1 Congestion cérébrale

3.1.1 Les données et le modèle

Le résumé de données statistiques concernant de la congestion cérébrale est le suivant

nombres des congestion cérébrales nombre des patients

groupe prenant d’aspirine 119 11037

groupe prenant du placebo 98 11034

Tableau 2.

avec

θ̂ =
119/11037

98/11034
= 1.21.

On utilise le même modèle pour modéliser ces données: on suppose qu’il y a deux
échantillons

A = (A1, . . . , Am), m = 11037

et
P = (P1, . . . , Pn), n = 11034.

où les v.a. Ai et Pi sont i.i.d. de loi Bernoulli

P(Ai = 1) = qas, P(Ai = 1) = 1 − qas

P(Pi = 1) = qpl, P(Pi = 1) = 1 − qpl

Les paramètres qas et qpl sont inconnus. Ils sont les probabilités qu’un patient a de subir
une congestion cérébrale dans le groupe prenant de l’aspirine et dans le groupe prenant
du placebo. Le problème consiste à construire un intervalle de confiance pour le rapport
qas/qpl à l’aide des méthodes déjà utilisées pour la crise cardiaque.

4 Simulation avec MATLAB

4.1 Crise cardiaque

4.1.1 Approximation gaussienne

• En se basant sur les données dans le tableau 1, tracer l’approximation gaussienne
pour la fonction de répartition de θ̂ − θ, c’est-à-dire la fonction de répartition de

θ̂ + ξσ(p̂as, p̂pl)

où ξ suit une loi gaussienne centrée réduite (voir les formules (4) et (6)).
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• Indiquer sur le même graphique l’intervalle de confiance pour α = 0.05. Utiliser les
formules (7) et (8).

4.1.2 Méthode de rééchantillonage

• Estimer la fonction de répartition de θ̂ − θ par la méthode de rééchantillonage avec
N = 10000. Utiliser les formules (9)–(10). Tracer cette fonction de répartition.

• Trouver l’intervalle de confiance de niveau α = 0.05 (voir (11) et (12)). Indiquer cet
intervalle sur le graphique. Représenter vos résultats comme sur la figure 1.

4.2 Congestion cérébrale

1. Faire le même exercice avec les données du tableau 2. Illustrer vos résultats comme
sur la figure 2.

2. Discuter la différence entre deux graphiques. Pourquoi l’effet de l’aspirine est bien
clair dans le cas de la crise cardiaque? Où la valeur neutre θ = 1 se trouve-t-elle
dans chaque cas?
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Figure 1: Crise cardiaque. Figure 2: Congestion cérébrale.
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