Utilisation en modélisation

Fonction de répartition empirique
et ensembles de confiance

1 Probleme et son modele statistique

Dans cet exercice on considére un probleme lié a 'utilisation de ’aspirine en médecine.
Les données statistiques sont issues de l'article "Heart attack risk found to be cut by
taking aspirin” paru dans le New York Times le 27 janvier 1997. Le probléeme consiste
a déterminer l'effet de l'aspirine sur la probabilité d’avoir une crise cardiaque ou une
congestion cérébrale. Il y avait deux groupes de patients: un groupe prenant de ’aspirine
(11037 patients) et autre prenant du placebo (11034 patients). Les médecins qui suivaient
ces patients ne savaient pas si le patient prenait de ’aspirine ou du placebo; dans chaque
groupe ils ont enregistré les nombres des crises cardiaques et des congestions cérébrales.

1.1 Crise cardiaque
1.1.1 Les données

Le résumé des données concernant les crises cardiaques se trouve dans le tableau suivant

nombre des crises cardiaques | nombre des patients
groupe prenant de ’aspirine 104 11037
groupe prenant du placebo 189 11034
Tableau 1.

Ce qui est trés étonnant dans ces données, c’est un nombre bas de crises cardiaques
dans le groupe prenant de l’aspirine. Le rapport
104/11037
189/11034
signifie que 'aspirine divise presque par deux la probabilité de subir une crise cardiaque.

Mais la question qui se pose est la suivante: si on répeéte encore une fois cette étude
médicale pourrait-on arriver a la méme conclusion?

0 = =0.55

1.1.2 Le modeéle

Pour modéliser les données concernant la crise cardiaque on va utiliser le modele suivant.
A chaque patient, on associe une variable qui prend deux valeurs 0 ou 1. La valeur 0
signifie que le patient n’a pas subi de crise cardiaque et la valeur 1 signifie qu’il en a subi
une. Pour le patient ¢ dans le groupe prenant de ’aspirine on notera cette variable par A;
et pour le patient dans le groupe prenant du placebo par P;. Alors, on dispose de deux
échantillons

A= (Ay,...,A,), m=11037

et
P=(P,...,P,), n=11034.
Notre hypothese principale est ce que les v.a. A; et P; sont i.i.d. de loi Bernoulli. C’est-
a~dire
P(Az = 1) = Pas; P(Az = 0) =1 — Das
P(-Pz = 1) = DPpl» P(P’L = O) =1 — DPpl



LEs PalalllCLles Pas CU Ppr SOLLL LHCOILIUS. L ES SOLL 165 PLODADLLLGS (U UL PatlCliL a (e subll
une crise cardiaque dans le groupe prenant de ’aspirine et dans le groupe prenant du
placebo.

En se basant sur A est sur P il nous faut construire un estimateur pour le rapport

o = Loz
Pip

Il est facile de voir que 'estimateur du maximum de vraisemblance pour 6 est donné par

Ding Ai/m_
> i Pi/n

Cet estimateur de 6 est une v.a. et donc il est entaché d’erreurs. Donc la question qui se
pose est la suivante: si on répétait cette expérience encore une fois, dans quel ensemble
pourrait se trouver la nouvelle valeur de 6 avec une grande probabilité (par exemple 0.95).
En statistique, I'idée qui consiste dans l'utilisation d’un ensemble qui couvre le parametre
inconnu avec une grande probabilité est appelée estimation par ensembles de confiance.

Autrement dit, dans le cas considéré on cherche un intervalle [0, 0] t.q.

6= (1)

P{6c[0,0]}>1-a (2)

ot la valeur 1 — o est appelée niveau de confiance. Soulignons que € et 0 sont les fonctions
des échantillons A et P. Tres souvent, on cherche un intervalle symétrique t.q.

PO>0)<1-35, P(H<6>3 (3)

Evidement, il existe beaucoup d’intervalles satisfaisant (2) ou (3), et on cherche un
intervalle de taille la plus petite possible. Malheureusement, ce probleme est tres difficile
et sa solution n’existe que dans des cas particuliers. En pratique, il y a deux méthodes
principales pour construire un intervalle de confiance de taille raisonnablement petite:

e méthode se basant sur le principe du maximum de vraisemblance (tests statistiques)

e méthode qui utilise un estimateur dont on peut calculer ou estimer assez facilement
la fonction de répartition.

Dans cet exercice on ne considere que la seconde approche. Nous choisissons I'estimateur
0 défini par (1) et supposons un instant que la fonction de répartition de 6 — 6

F(xapa87ppl) = P(é -0 < ,Z‘)

est connue. Soulignons que cette fonction de répartition dépend de pgs, ppr qui sont in-
connus. Si ces parametres étaient connus, évidemment, il nous suffirait de trouver les

quantiles go (Pas, Ppi) €t Qa(Pas, Ppi) t-q.

| Q

(6%
F(Qaapasappl) = E et F(Qampa&ppl) =1-

pour construire l'intervalle de confiance suivant
QZG_QQ(paSyppl)y gze“‘@a(pas,ppl)-

Le probleme principal de cette approche consiste a donc trouver la fonction de répartition
F(x,pas,ppr). Pour calculer cette fonction on va utiliser deux méthodes qui se basent sur

e le théoreme de la limite centrale (approximation gaussienne)

e la fonction de répartition empirique (méthode du rééchantillonage)
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Le résultat suivant donne la loi asymptotique de 6—0 lorsque n, m — oo.

Théoréme 1 Soit

Pas [1—p 1 — ppi
Um,n(pas,ppl) === “ + - (4)
Ppl MPas nppl

alors, lorsque m — oo et n — 0o

0—0 r
— 5 (5)
Um,n(paSa ppl)
ot & suit une loi gaussienne centrée réduite.
Démonstration. Soient
1 — 1 «
ﬁas:EZ;Az ﬁplzgz;-Pz (6)
1= 1=

les estimateurs du maximum de vraisemblance des parametres inconnus p,s et pp. Donc
par le théoréeme de la limite centrale, lorsque m — oo et n — oo

<\/%(]§as — Pas)s V1 (Dpi —ppl)> 5 (fl V/Pas(1 = pas), &2/ pp(1 — ppl))

ou & et & sont les v.a. indépendantes gaussiennes centrées réduites. D’ou, a 'aide du
développement de Taylor, on obtient (5). [

Ce théoreme nous permet de construire un intervalle de confiance de niveau a. Soit t,
le quantile de niveau «/2 de loi gaussienne centrée réduite, c’est-a-dire la racine

1 > 2 «o
— U2 gy = = 7
e n
\/27T/t; 2 @

donc on pose

é - O'n,m(ﬁa& ﬁpl)ta

0 =
0 = é+0n,m(ﬁa8yﬁpl)ta'

Théoreme 2 Lorsque m — oo et n — oo
P(6¢[0.0) —a
Démonstration. Notons, que par la loi des grands nombres

Un,m(ﬁamﬁpl) - Jm,n(pll87ppl)7 m,n — o0.

Donc, en utilisant le Théoréeme 1 et la définition de £, on acheve la démonstration. [

3 Méthode du rééchantillonage

Cette technique récente se base sur 'utilisation intensive des ordinateurs. L’idée principale
de cette méthode consiste & estimer la fonction de répartition de 8 — 0 par la méthode de
Monte-Carlo. Dans notre cas, cette méthode se réduit aux étapes suivantes:
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n

1 & 1
%ZlA < z), —ZlP<x
i=1 i=1

3

pour cela il suffit d’estimer les parametres inconnus p,s et p, en se basant sur les
échantillons A et P

n
pas Z A ﬁpl = % Z -Pz
=1

car

Fa(x) = (1= Pas)1L(z > 0) + Pasl(z > 1),
Fp(z) = (1 = pp)1(xz > 0) + Pasl(z > 1).

e générer N vecteurs indépendants
A= (AL, ALY, Pl =(P, . ..,P)y 1=1,...,N
dont les fonctions de répartition sont F4(x) et Fp(z) respectivement.

e calculer les estimateurs

gl — Zz 1Al/m

I=1,....N 9)
z lpl/n

e calculer la fonction de répartition empirique de 6l — 6

1
et trouver deux quantiles empiriques

Fv@a)=1-3,  Fyla)=3 (1)

e finalement, construire I'intervalle de confiance [0, f] avec
Q:é_QOU §:é+Qa, (12)

3.0.3 Pourquoi le rééchantillonage marche-t-il?

On notera )
F(xapa&ppl) = P(9 —-0< x)

Le théoreme suivant explique quelle fonction de répartition rend le rééchantillonage.
Théoreme 3 Lorsque N — oo

~ ~ R P.S.
sup |FN($) - F(ajapas’ppl” —0.
X
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Ensuite, par la loi des grands nombres, pour les estimateurs pqs et p, on a lorsque

m,n — 0o
~ P.S. ~ P.S.
Pas — Pass Ppl — DPpl-

Il est facile de voir que la fonction de répartition F(z,pqys, ppl) est continue par rapport a
Pas, Ppi- Donc, lorsque m,n — oo

~ ~ P.S.
SUP|F(SL‘,pa3,ppl) _F(xapamppl” =" 0.
X

C’est pourquoi

P(Hgé [é—qa,é—i—Qa]) —a, m,n,N — oo

3.1 Congestion cérébrale
3.1.1 Les données et le modéle

Le résumé de données statistiques concernant de la congestion cérébrale est le suivant

nombres des congestion cérébrales | nombre des patients
groupe prenant d’aspirine 119 11037
groupe prenant du placebo 98 11034
Tableau 2.
avee 119/11037
98/11034

On utilise le méme modele pour modéliser ces données: on suppose qu’il y a deux
échantillons
A= (Ay,...,A,), m=11037

et
P=(P,...,P,), n=11034.

ou les v.a. A; et P; sont i.i.d. de loi Bernoulli
P(Az = ]-) = Qas, P(Az = 1) =1- Qas
P(P’L = ]-) = Qqpl, P(P’L = ]-) =1- dpl

Les parametres qqs et g, sont inconnus. Ils sont les probabilités qu'un patient a de subir
une congestion cérébrale dans le groupe prenant de l'aspirine et dans le groupe prenant
du placebo. Le probleme consiste a construire un intervalle de confiance pour le rapport
Qas/qp & I'aide des méthodes déja utilisées pour la crise cardiaque.

4 Simulation avec MATLAB

4.1 Crise cardiaque
4.1.1 Approximation gaussienne

e En se basant sur les données dans le tableau 1, tracer I'approximation gaussienne
pour la fonction de répartition de # — 6, c’est-a-dire la fonction de répartition de

é + §U (ﬁam ﬁpl)

ou & suit une loi gaussienne centrée réduite (voir les formules (4) et (6)).
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formules (7) et (8).
4.1.2 Meéthode de rééchantillonage

e Estimer la fonction de répartition de 6—6 par la méthode de rééchantillonage avec
N =10000. Utiliser les formules (9)—(10). Tracer cette fonction de répartition.

e Trouver l'intervalle de confiance de niveau ov = 0.05 (voir (11) et (12)). Indiquer cet
intervalle sur le graphique. Représenter vos résultats comme sur la figure 1.

4.2 Congestion cérébrale

1. Faire le méme exercice avec les données du tableau 2. Illustrer vos résultats comme
sur la figure 2.

2. Discuter la différence entre deux graphiques. Pourquoi l'effet de I’aspirine est bien
clair dans le cas de la crise cardiaque? Ou la valeur neutre 8 = 1 se trouve-t-elle
dans chaque cas?
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Figure 1: Crise cardiaque. Figure 2: Congestion cérébrale.
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